Structure of 4-Sila-3-platinacyclobutene and Its Formation via Pt-Promoted γ-Si-H Bond Activation of 3-Sila-1-propenylplatinum Precursor

Makoto Tanabe and Kohtaro Osakada*
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received December 28, 2001

Complexes of group 10 metals catalyze various $\mathrm{C}-\mathrm{Si}$ bondforming reactions of organosilicon compounds with unsaturated molecules such as alkenes, alkynes, and dienes. ${ }^{1}$ Many Si-containing cyclic compounds were prepared by this approach, using diorganosilanes, tetraorganodisilanes, silacyclopropenes, and silacyclopropanes. ${ }^{2-7}$ These reactions have been considered to involve 4-sila-3-metallacyclobutene as the common intermediate that plays an important role in forming a new $\mathrm{C}-\mathrm{Si}$ bond. This four-membered metallacycle, however, has not been isolated or structurally characterized. Ishikawa et al. reported the preparation of a 4-sila-3-nickelacyclobutene in situ, although it is too unstable to be isolated or characterized by crystallography. ${ }^{8}$ The Pt-complex-promoted reactions of organosilanes and disilanes with alkynes were postulated to involve a sily-lene-coordinated platinum complex ${ }^{9}$ as a precursor to the metallacyclobutene intermediate. ${ }^{6,7}$ In this paper, we report the first isolation and crystallographic results of a Pt-containing silacyclobutene and demonstrate its formation pathway via an unexpected precursor.
$\mathrm{Pt}\left(\mathrm{SiHPh}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}{ }^{10}$ reacts with an equimolar mixture of dimethyl acetylenedicarboxylate (DMAD) in THF ($[P \mathrm{Pt}]=5.5 \mathrm{mM}$) for 12 h to produce $\mathrm{Pt}\left(\mathrm{CZ}=\mathrm{CZ}-\mathrm{SiPh}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}(\mathrm{Z}=\mathrm{COOMe})(\mathbf{1})$ in 85% yield as yellow crystals accompanied by the formation of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ (eq 1). Figure 1 shows the molecular structure of $\mathbf{1}$ by

X-ray crystallography. ${ }^{11}$ The complex contains a planar fourmembered ring with an $\mathrm{Si}-\mathrm{Pt}-\mathrm{C} 1$ angle $\left(65.8(2)^{\circ}\right)$ that is smaller than that of the saturated four-membered 2-sila-1-platinacyclobutane (68.1(3) ${ }^{\circ}$). ${ }^{12}$ The ${ }^{29} \operatorname{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal of $\mathbf{1}$ at $\delta-63.6$ shows coupling with ${ }^{195} \mathrm{Pt}\left(J_{\text {SiPt }}=778 \mathrm{~Hz}\right)$ and two unequivalent ${ }^{31} \mathrm{P}\left({ }^{2} J_{\text {SiP }}\right.$ $=161$ and 3 Hz) nuclei. ${ }^{13}$

The reaction of $\mathrm{Pt}\left(\mathrm{SiHPh}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}$ with an equimolar mixture of DMAD in the presence of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ for $5 \mathrm{~min}([\mathrm{Pt}]=67 \mathrm{mM})$ results in the isolation of cis- $\mathrm{Pt}\left(\mathrm{CZ}=\mathrm{CZ}-\mathrm{SiHPh}_{2}\right)\left(\mathrm{SiHPh}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (cis-2), which is formed via insertion of DMAD into a $\mathrm{Pt}-\mathrm{Si}$ bond of $\mathrm{Pt}\left(\mathrm{SiHPh}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}$ (eq 2).

Dissolution of once-isolated cis-2 in benzene- d_{6} causes its partial conversion into $\mathbf{1}$, producing a mixture of $\mathbf{1}$, cis-2, and $\mathrm{H}_{2} \mathrm{SiPh}_{2}$.

[^0]

Figure 1. ORTEP drawing of 1 with 50% thermal ellipsoidal plots. The hydrogen atoms are omitted for simplicity.

Figure 2. Ratios of $\mathbf{1}$ and cis-2 of the equilibrated mixtures obtained from equimolar reactions of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ and $\mathbf{1}$ with [Pt] $=1-22 \mathrm{mM}$ (benzene- d_{6}, $26^{\circ} \mathrm{C}$).
These results suggest that reaction 1 involves cis- $\mathbf{2}$ as the initial product, which is turned into $\mathbf{1}$ during the reaction. Dissolution of an equimolar mixture of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ and 1 in benzene- d_{6} causes the partial formation of cis-2 within 1 h . Figure 2 plots the ratios of $\mathbf{1}$ and cis- $\mathbf{2}$ in the equilibrium mixtures starting from equimolar mixtures of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ and $\mathbf{1}$ with [Pt] $=1-22 \mathrm{mM}$. Formation of $\mathbf{1}$ is thermodynamically favored with a low concentration of the complexes. These results suggest that the two complexes are converted easily and reversibly via $\mathrm{H}_{2} \mathrm{SiPh}_{2}$-promoted ring opening of $\mathbf{1}$ and $\gamma-\mathrm{Si}-\mathrm{H}$ bond activation of cis-2, followed by elimination of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ (eq 3). Slow formation of trans $-\mathrm{Pt}\left(\mathrm{CZ}=\mathrm{CZ}-\mathrm{SiHPh}_{2}\right)$ -

$\left(\mathrm{SiHPh}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (trans-2) in the reaction mixture prevented the precise determination of the thermodynamic parameters of the above reaction.

Figure 3. ORTEP drawing of $\mathbf{3}$ with 50% thermal ellipsoidal plots. The crystal contains solvated THF molecules. Hydrogen atoms, except for SiH , and solvent molecule are omitted for simplicity.

Complex $\operatorname{Pt}\left(\mathrm{CZ}=\mathrm{CZ}-\mathrm{SiHPh}_{2}\right)\left(\mathrm{SiHPh}_{2}\right)($ dmpe $)(3)($ dmpe $=1,2-$ bis(dimethylphosphino)ethane), which has an analogous structure to cis-2, is obtained by the reaction of DMAD with $\mathrm{Pt}\left(\mathrm{SiHPh}_{2}\right)_{2^{-}}$ (dmpe) (eq 4). The molecular structure of $\mathbf{3}$ (Figure 3) ${ }^{14}$ shows an

agostic interaction of the γ-hydrogen of the 3-sila-1-propenyl ligand. The hydrogen is located at an apical position of the Pt center. The $\mathrm{Pt} \cdots \mathrm{H}$ distance, $2.43 \AA$, is less than the $2.95 \AA$ distance predicted from the sum of van der Waals radii of Pt and $\mathrm{H} .{ }^{15}$

Temperature-dependent change of ${ }^{1} J_{\mathrm{SiH}}\left(198 \mathrm{~Hz}\right.$ at $70^{\circ} \mathrm{C}, 196$ Hz at $25^{\circ} \mathrm{C}, 195 \mathrm{~Hz}$ at $-30^{\circ} \mathrm{C}$; cis-2, 197 Hz at $25^{\circ} \mathrm{C}$) of 3-sila-1-propenyl ligand in the NMR spectra of $\mathbf{3}$ and lower $v(\mathrm{SiH})$ values of cis-2 $\left(2098 \mathrm{~cm}^{-1}\right)$, trans- $\mathbf{2}\left(2078 \mathrm{~cm}^{-1}\right)$, and $\mathbf{3}\left(2116 \mathrm{~cm}^{-1}\right)$ than $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{H}\left(2124 \mathrm{~cm}^{-1}\right)^{16}$ indicate the presence of a weak interaction between the SiH hydrogen and Pt in the solid state and in solution. The structure with the cis $\mathrm{C}=\mathrm{C}$ bond is suited for further strengthening of the interaction, which leads to $\gamma-\mathrm{Si}-\mathrm{H}$ bond cleavage promoted by Pt. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ shows its slow conversion into the corresponding 4-sila-3-platinacyclobutene $\stackrel{P t(C Z=C Z-S i P h}{2})($ dmpe) (4) with concomitant formation of $\mathrm{H}_{2} \mathrm{SiPh}_{2}$ (eq 5). Although isolation of 4 from the equilibrium

mixture of $\mathbf{3}$ and $\mathbf{4}$ was not feasible, ${ }^{17}$ similar NMR parameters between 1 and 4 clearly indicate the 4-sila-3-platinacuclobutene structure of $4 .{ }^{18}$

Thus, complexes cis-2 and $\mathbf{3}$ cause intramolecular $\gamma-\mathrm{Si}-\mathrm{H}$ bond activation by Pt to afford mixtures with the corresponding 4-sila-3-platinacyclobutenes. Reaction 1 with a low concentration of Pt complex rendered the isolation of 1 possible. Another possible route to 4-sila-3-platinacyclobutene from the reaction of an alkyne with disilylplatinum complexes, involving the initial formation of silylene-platinum complexes, ${ }^{7}$ is less plausible for explaining the formation of silaplatinacyclobutene in the reaction of this paper.

In summary, a stable 4-sila-3-platinacyclobutene (1) was characterized in both the solid state and solution. The complex is transformed into cis-2 in an equilibrium reaction involving $\mathrm{H}_{2} \mathrm{SiPh}_{2}$. Facile and reversible conversion between $\mathbf{1}$ and cis-2 indicates that cis- $\mathbf{2}$ is the real precursor of $\mathbf{1}$ in reaction 1.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental procedures for the synthesis of the complexes and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1}$, cis-2, trans-2, 3, and an equilibrated mixture of $\mathbf{3}$ and 4, and results of X-ray crystallography for $\mathbf{1}$, trans-2, and $\mathbf{3}$ (PDF). This material is available free of charge via the Internet at http:// pubs.acs.org.

References

(1) Reviews: (a) Speir, J. L. Adv. Organomet. Chem. 1979, 17, 407. (b) Braunstain, P.; Knorr, M. J. Organomet. Chem. 1995, 500, 21. (c) Horn, K. A. Chem. Rev. 1995, 95, 1317. (d) Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351. (e) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 34. (f) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221.
(2) (a) Seyferth, D.; Vick, S. C.; Shannon, M. L.; Lim, T. F. O.; Duncan, D. P. J. Organomet. Chem. 1977, 135, C37. (b) Seyferth, D.; Duncan, D. P.; Vick, S. C. J. Organomet. Chem. 1977, 125, C5. (c) Seyferth, D.; Shannon, M. L.; Vick, S. C.; Lim, T. F. O. Organometallics 1985, 4, 57.
(3) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. J. Am. Chem. Soc. 1977, 99, 3879.
(4) (a) Ishikawa, M.; Sugisawa, H.; Harata, O.; Kumada, M. J. Organomet. Chem. 1981, 217, 43. (b) Ishikawa, M.; Matsuzawa, S.; Hirotsu, K.; Kamitori, S.; Higuchi, T. Organometallics 1984, 3, 1930. (c) Ishikawa, M.; Matsuzawa, S.; Higuchi, T.; Kamitori, S.; Hirotsu, K. Organometallics 1985, 4, 2040. (d) Ishikawa, M.; Nomura, Y.; Tozaki, E.; Kunai, A.; Ohshita, J. J. Organomet. Chem. 1990, 399, 205. (e) Ohshita, J.; Naka, A.; Ishikawa, M. Organometallics 1992, 11, 602.
(5) Palmer, W. S.; Woerpel, K. A. Organometallics 1997, 16, 1097, 4824. Palmer, W. S.; Woerpel, K. A. Organometallics 2001, 20, 3961.
(6) (a) Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9263. (b) Yamamoto, K.; Okinoshima, H.; Kumada, M. J. Organomet. Chem. 1971, 27, C31.
(7) Yamashita, H.; Tanaka, M.; Goto, M. Organometallics 1992, 11, 3227. See also: Eaborn, C.; Metham, T. N.; Pidcock, A. J. Organomet. Chem. 1977, 131, 377.
(8) 4-Sila-3-nickelacyclobutene, prepared in situ from the reaction of a silacyclopropene with $\mathrm{Ni}\left(\mathrm{PEt}_{3}\right)_{4}$, was characterized by NMR in solution. See: Ishikawa, M.; Ohshita, J.; Ito, Y.; Iyoda, J. J. Am. Chem. Soc. 1986, 108, 7417. Ohshita, J.; Isomura, Y.; Ishikawa, M. Organometallics 1989, 8, 2050.
(9) (a) Grumbine, S. D.; Tilley, T. D. J. Am. Chem. Soc. 1993, 115, 7884. (b) Mitchell, G. P.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 7635. (c) Feldman, J. D.; Mitchell, G. P.; Nolte, J. O.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 11184. (d) Mitchell, G. P.; Tilley, T. D. Angew. Chem., Int. Ed. 1998, 37, 2524.
(10) Kim, Y.-J.; Park, J.-I.; Lee, S.-C.; Osakada, K.; Tanabe, M.; Choi, J.-C.; Koizumi, T.; Yamamoto, T. Organometallics 1999, 18, 1349.
(11) Crystal data of 1: $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{SiPtP}_{2} \mathrm{O}_{4}, M_{\mathrm{r}}=671.65$, orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$ (No. 19), $a=15.697(2) \AA, b=17.690(5) \AA, c=16.442(2) \AA, V=$ 2719.8(9) $\AA^{3}, Z=4, \mu(\mathrm{Mo} \mathrm{K} \alpha)=5.326 \mathrm{~mm}^{-1}, D_{\mathrm{c}}=1.640 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1328,3358$ unique reflections, 289 variables, $R=0.030, R_{\mathrm{w}}=$ $0.024, \mathrm{GOF}=1.67$, using 2846 reflections with $I>3 \sigma(I)$.
(12) Tanabe, M.; Yamazawa, H.; Osakada, K. Organometallics 2001, 20, 4451.
(13) The 4 -sila-3-nickelacyclobutene of ref 8 showed the Si NMR peak at δ -125.3 (corrected as the chemical shift from SiMe_{4}). The higher magnetic field position than 1 may be ascribed to a SiMe_{3} substituent at the Si atom.
(14) Crystal data for $3 \cdot \mathrm{THF}: \mathrm{C}_{36} \mathrm{H}_{44} \mathrm{Si}_{2} \mathrm{PtP}_{2} \mathrm{O}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, M_{\mathrm{r}_{\mathrm{o}}}=926.06$, monoclinic, $P 2_{1} / n($ No. 14), $a=9.120(2) \AA, b=22.878(4) \AA, c=98.43(2) \AA$, $\beta=98.43(2)^{\circ}, V=4195(1) \AA^{3}, Z=4, \mu(\mathrm{MoK} \alpha)=3.504 \mathrm{~mm}^{-1}, D_{\mathrm{c}}=$ $1.466 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1872,10444$ unique reflections, 451 variables, R $=0.045, R_{\mathrm{w}}=0.035, \mathrm{GOF}=1.72$, using 5094 reflections with $I>3 \sigma(I)$.
(15) Bondi, A. J. Phys. Chem. 1964, 68, 441.
(16) Stefanac, T. M.; Brook, M. A.; Stan, R. Macromolecules 1996, 29, 4549.
(17) The solution of $\mathbf{3}$ is partially converted into $\mathbf{4}$ and forms an equilibrated mixture of the complexes ($75: 25$) in 2 h at room temperature. Upon raising the temperature to $90^{\circ} \mathrm{C}, \mathbf{3}$ is further converted to $\mathbf{4}$ to produce the mixture of $\mathbf{3}$ and $\mathbf{4}$ in a ratio of $30: 70$.
(18) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR in toluene- $d_{8}: \delta 21.2\left(J_{\mathrm{PPt}}=2117 \mathrm{~Hz}\right)$ and $37.3\left(J_{\mathrm{PPt}}=\right.$ $1345 \mathrm{~Hz})$ for 4 at $90^{\circ} \mathrm{C}, \delta-31.9\left(J_{\mathrm{PPt}}=2334 \mathrm{~Hz}\right)$ and $-17.5\left(J_{\mathrm{PPt}}=\right.$ 1368 Hz) for $\mathbf{1}$ at $24^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR in toluene- $d_{8}: \delta 3.40$ and 3.68 for $\mathbf{4}$ at $90{ }^{\circ} \mathrm{C}, \delta 3.25$ and 3.73 for $\mathbf{1}$ at $24^{\circ} \mathrm{C}$.

JA017888R

[^0]: * Corresponding author. E-mail: kosakada@res.titech.ac.jp.

